Package: BayesDissolution 0.2.0

BayesDissolution: Bayesian Models for Dissolution Testing

Fits Bayesian models (amongst others) to dissolution data sets that can be used for dissolution testing. The package was originally constructed to include only the Bayesian models outlined in Pourmohamad et al. (2022) <doi:10.1111/rssc.12535>. However, additional Bayesian and non-Bayesian models (based on bootstrapping and generalized pivotal quanties) have also been added. More models may be added over time.

Authors:Tony Pourmohamad [aut, cre], Steven Novick [ctb]

BayesDissolution_0.2.0.tar.gz
BayesDissolution_0.2.0.zip(r-4.5)BayesDissolution_0.2.0.zip(r-4.4)BayesDissolution_0.2.0.zip(r-4.3)
BayesDissolution_0.2.0.tgz(r-4.5-any)BayesDissolution_0.2.0.tgz(r-4.4-any)BayesDissolution_0.2.0.tgz(r-4.3-any)
BayesDissolution_0.2.0.tar.gz(r-4.5-noble)BayesDissolution_0.2.0.tar.gz(r-4.4-noble)
BayesDissolution_0.2.0.tgz(r-4.4-emscripten)BayesDissolution_0.2.0.tgz(r-4.3-emscripten)
BayesDissolution.pdf |BayesDissolution.html
BayesDissolution/json (API)

# Install 'BayesDissolution' in R:
install.packages('BayesDissolution', repos = c('https://tpourmohamad.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/tpourmohamad/bayesdissolution/issues

Datasets:
  • dis_data - A dissolution data set taken from Ocana et al. (2009).

On CRAN:

2.70 score 290 downloads 13 exports 45 dependencies

Last updated 1 years agofrom:0f65e56bd8. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 09 2025
R-4.5-winOKFeb 09 2025
R-4.5-macOKFeb 09 2025
R-4.5-linuxOKFeb 09 2025
R-4.4-winOKFeb 09 2025
R-4.4-macOKFeb 09 2025
R-4.3-winOKFeb 09 2025
R-4.3-macOKFeb 09 2025

Exports:bmndissplotf2bayesf2bcaf2bootf2calcf2gpqf2pbsggdissplothgpmake_dis_dataprocess_resultsrunExample

Dependencies:base64encbslibcachemclicodacommonmarkcrayondigestfastmapfontawesomefsgeoRgluehtmltoolshttpuvjquerylibjsonlitelaterlatticelifecyclemagrittrMASSMatrixMatrixModelsmcmcMCMCpackmemoisemimemnormtpromisespsclquantregR6rappdirsRcpprlangsassshinysourcetoolsspSparseMsplancssurvivalwithrxtable